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Abstract

Based on asymptotic considerations a heat transfer law for turbulent Rayleigh–Bénard convection is found that differs from existing
correlations which often are of a power law type with respect to their Rayleigh number dependence. From the asymptotic temperature
profile, derived by matching temperature gradients in the overlap region of the wall layer and the core layer, a Nusselt number follows
which includes a logarithmic term. This correlation is in good agreement with data from highly accurate Rayleigh–Bénard experiments
for Rayleigh numbers between 105 and 1015 and Prandtl numbers larger than 0.5. It is an alternative to existing power laws or more
complicated correlations for Nu = Nu(Ra,Pr).
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In Rayleigh–Bénard convection flows a fluid is confined
between two parallel horizontal plates, a hot bottom plate
and a cold top plate. Once a critical value of the character-
istic parameters is reached the fluid starts moving due to
density differences and heat is transferred mainly by con-
vection. The Nusselt number Nu � joT/oyjw Æ h/DT then
only depends on the Rayleigh number Ra = gbDTh3/(ma),
the Prandtl number Pr = m/a and the geometry character-
ised by the aspect ratio C = d/h.

Though the geometry is simple and intensive experimen-
tal and theoretical investigations have been performed in
the last decades there is still a controversy whether a simple
power law for Nu = Nu(Ra,Pr,C) is adequate.

For a long time it was accepted that for high Rayleigh
numbers the heat flux is independent of the plate distance
h. This implies to Nu � Ra1/3 since Nu � h and Ra � h3,
see Priestley [1].
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Castaing et al. [2] performed experiments over a wide
range of Rayleigh numbers with improved accuracy com-
pared to earlier studies and found Nu = 0.23 Æ Ra0.282 for
Pr � 1. They developed a new theory with an exponent
2/7 = 0.286 for Ra quite close to their experimentally
found value. Shraiman and Siggia [3] provided an alterna-
tive derivation of the 2/7th power law based on boundary
layer considerations. Wu and Libchaber [4] experimentally
determined Nu = 0.146 Æ Ra0.286 and Kerr [5] numerically
found Nu = 0.186 Æ Ra0.276, all in favour of the 2/7-law
which thus seemed to be established.

In a more sophisticated approach Grossmann and
Lohse [6] developed a theory based on the kinematic and
thermal dissipation rates in the bulk and the boundary
layer. They identified different regimes with individual sca-
lings and obtained Nu(Ra,Pr) by a superposition of the
scaling laws in neighbouring regimes. Xu et al. [7], for
example, found good agreement between their measure-
ments and this theory. For an extension to large Prandtl
numbers, see [8].

Niemela et al. [9] in their experiments covered a wide
range of Rayleigh numbers (106 6 Ra 6 1017) and for
Pr � 1 found Nu = 0.124 Æ Ra0.309 which is between the
1/3 and 2/7-laws but cannot be interpreted properly by
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Nomenclature

a molecular thermal diffusivity
d width of experimental setup
C constant of temperature profile
D parameter of temperature profile
g gravitational acceleration
h vertical distance between the two plates
ks surface roughness
ks eq equivalent sand roughness
k�s non-dimensionalized surface roughness, ks/Tc Æ

joT/oyjw
Ra Rayleigh number, gbDTh/(ma)
Nu Nusselt number, h/DT Æ joT/ oyjw
Pr Prandtl number, m/a
T mean temperature
joT/oyjw absolute value of temperature gradient at the

wall
Tc characteristic temperature, ½am joT=oyj3w=ðgbÞ�

1=4

Tcold temperature of cold wall
Th temperature of hot wall
DT temperature difference between top and bottom

plate

�u mean horizontal velocity component
�v mean vertical velocity component
�v0T 0 turbulent heat flux
x coordinate parallel to the wall
y coordinate normal to the wall
y· non-dimensionalized wall distance, y/Tc Æ

joT/oyjw
ŷ intermediate variable, y/(h(1�a)da)

Greek symbols
a exponent in the intermediate variable ŷ,

0 6 a 6 1
b coefficient of thermal expansion
d scale for the height of the wall layer, Tc/joT/oyjw
g non-dimensionalized wall distance in the core

layer, y/h
C aspect ratio, d/h
m molecular kinematic viscosity
H· non-dimensionalized temperature, (Th � T)/Tc

1 The data of [19] and [20] are available at the homepage of the institute
for reactor safety (research center Karlsruhe): http://hikwww4.

fzk.de/irs/irs3/.
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existing theories. They also mentioned that the choice of
fluid properties is an important aspect in correlating data.
They reconsidered the data of Wu and Libchaber [4] with
fluid properties of improved accuracy and obtained
Nu � Ra0.299 instead of Nu � Ra0.286.

Ahlers [10] and Verzicco [11] examined the influence of
sidewall conduction and found that it cannot be neglected
or corrected by the heat transfer rates in evacuated exper-
imental set-ups. Ahlers [10] proposed a correction to
account for the heat flux in different wall materials and,
for example, recalculated the data of Niemela et al. [9]
getting Nu � Ra0.318 instead of Nu � Ra0.309. These studies
show that experimental data have to be analysed very
carefully.

In recent experiments, for example by Ashkenazi and
Steinberg [12], Chavanne et al. [13], Nikolaenko and
Ahlers [14], Niemela and Sreenivasan [15] and Roche
et al. [16], the effect of sidewall conduction could either
be neglected due to a modified experimental set-up or
was corrected by an analytical approach. These data as
well as numerical data, where heat conduction in walls is
absent, are taken as reference data in Section 3 of our
study.

Different from previous theoretical studies, we first
derive an expression for the temperature profile. This is
done in Section 2 by asymptotic matching of gradients like
for forced and natural convection flow fields, see Schlich-
ting and Gersten [17], Hölling and Herwig [18], respec-
tively. Once the temperature profile can be descriped
properly, a Nusselt number correlation can be deduced
(Section 3) leading to a new Nusselt number correlation
based on asymptotic considerations, i.e. being asymptoti-
cally correct for Ra ! 1.

2. Temperature profile

We consider a Rayleigh–Bénard flow with plates of infi-
nite extent as studied numerically by Kerr [5], Grötzbach
[19], Wörner [20]1 and Hartlep [21] for Pr = 0.71. Due to
the infinite extension of the plates, there is no time-
averaged local mean flow (i.e. �u ¼ �v ¼ 0). Thus, only an
expression for the temperature profile has to be found.

With no mean flow and plates of infinite extent (i.e. with
no gradients in x-direction, o(� � �)/ox = 0) the energy equa-
tion is reduced to

0 ¼ o

oy
a
oT
oy

� v0T 0
� �

) a
oT
oy

����
w

¼ a
oT
oy

� v0T 0. ð1Þ

Obviously, a Æ oT/oyjw is a characteristic quantity of the
Rayleigh–Bénard convection since a � oT=oy � v0T 0, which
is basically the total heat flux, is constant for all 0 6 y 6 h

and equal to a Æ oT/oyjw. Therefore, a characteristic refer-
ence temperature can be defined with the temperature gra-
dient at the wall, i.e.

T c �
am
gb

oT
oy

����
����3
w

 !1=4

. ð2Þ
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Fig. 1. Two-layer structure near the hot wall. Adjacent to the wall exists a
sublayer with only molecular heat flux as a part of the wall layer. The wall
layer has no sharp edge towards the core layer, instead an overlap layer
exists in between. Wall layer and core layer variables are valid simulta-
neously in the overlap layer.
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A similar characteristic temperature holds for natural con-
vection on vertical walls, see Hölling and Herwig [18].
Here, Tc according to Eq. (2) is used to non-dimensionalize
the temperature difference, which without loss of generality
can be defined at the hot plate temperature:

H� � T h � T
T c

ð3Þ

For Ra ! 1 the flow-field has a two-layer-structure, with
a region close to the wall where molecular and turbulent
heat flux are present (wall layer) and the bulk with only tur-
bulent heat flux (core layer), see Fig. 1. An appropriate
scale for the wall layer thickness is

d � T c

j oT=oyjw
ð4Þ

with

lim
Ra!1

d
h
¼ 0 ð5Þ

thus leading to a singularity at the wall.2 A non-dimen-
sional wall distance in the wall layer that does not degener-
ate is

y� � y
d
¼ oT

oy

����
����
w

� y
T c

ð6Þ

since for all values of y within the wall layer limRa!1(y/
d) = O(1).

The wall distance in the core layer, non-dimensionalized
with h, is g � y/h. Here, y· would be inappropriate since,
for example, at y = h/2

lim
Ra!1

oT
oy

����
����
w

� h=2
T c

� �
! 1. ð7Þ

The wall layer and the core layer asymptotically overlap
and thus can be described in both variables (i.e. y· and g)
in this overlap layer. The temperature profile is obtained
2 T(y = 0) = Th, but limd!0T(y = d) = Th � DT/2, with Th being the
temperature of the hot wall at y = 0 and DT = Th � Tcold.
by matching the gradients in this overlap region where an
intermediate variable ŷ ¼ y=ðh1�adaÞ with 0 6 a 6 1 exists,
so that g 6 ŷ 6 y�, see for example Schlichting and Ger-
sten [17]. Temperature gradients, approaching the overlap
layer from both sides, should be the same oH�=oŷ, i.e.

oH�

oŷ
¼ lim

y�!1

oH�ðy�Þ
oy�

oy�

oŷ
¼ lim

y�!1

h1�ada

d
� oH

�ðy�Þ
oy�

ð8Þ

oH�

oŷ
¼ lim

g!0

oH�ðgÞ
og

og
oŷ

¼ lim
g!0

h1�ada

h
� oH

�ðgÞ
og

. ð9Þ

Equating (8) and (9) leads to

lim
y�!1

y�
oH�ðy�Þ

oy�
¼ lim

g!0
g
oH�ðgÞ

og
ð10Þ

after both sides have been multiplied by y. In general, Eq.
(10) can only be fulfilled if both sides are the same constant
C. Therefore

lim
y�!1

oH�ðy�Þ
oy�

¼ C
y�

ð11Þ

which, after an integration over the wall layer, leads to

lim
y�!1

H� ¼ C lnðy�Þ þ D. ð12Þ

This is the asymptotic temperature profile which holds
close to but not at the wall.

2.1. Viscous sublayer

For the region adjacent to the wall the temperature pro-
file can be derived as following. Here, turbulent fluctua-
tions are completely damped by the wall (v0T 0 ¼ 0) and a
purely molecular sublayer exists as part of the wall layer.
Integrating the energy equation o2T/oy2 = 0 we get for
the temperature profile

T h � T ¼ oT
oy

����
����
w

� y ð13Þ

or in its non-dimensional form

T h � T
T c

¼ oT
oy

����
����
w

� y
T c

) H� ¼ y�. ð14Þ
2.2. Comparison with experimental and numerical data

Measured and calculated (DNS) data can be used to
check the general form (12) for H· and to determine its
constants C and D. Unfortunately, only very few detailed
temperature profiles are available though numerous exper-
iments have been performed in order to determine Nusselt
numbers. There also is only a limited range of Rayleigh
numbers for which experimental and DNS data can be
found, see Chavanne et al. [13] for an overview.

In Table 1 the sources for the temperature profiles are
listed which we used to validate our asymptotic tempera-
ture profile (12).



Table 1
Sources for DNS data and measured temperature profiles compared to
Eq. (12) in order to determine C and D

Reference Ra Pr Type Nu

Kerr [5] 2 · 107 0.7 DNS 0.186 Æ Ra0.276

Grötzbach [19] 3.81 · 105 0.7 DNS –
Wörner [20] 6.3 · 105 0.7 DNS –
Hartlep [21] 106, 107 0.7 DNS 0.175 Æ Ra0.278

Du [22] 1.5 · 109 5.4 exp. 0.17 Æ Ra0.29

Chu [23] 9.34 · 106 5.4 exp. 0.183 Æ Ra0.278

�1.86 · 107
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1132 M. Hölling, H. Herwig / International Journal of Heat and Mass Transfer 49 (2006) 1129–1136
The data sets of Table 1 are plotted in their non-dimen-
sionalized form, i.e. H· and y·, in Fig. 2 (DNS data) and in
Fig. 3 (experimental data). All data sets can be fitted to a
logarithmic profile with a constant slope C = 0.1. The
value of D, however, depends on the Rayleigh number.
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Fig. 2. Non-dimensionalized DNS temperature profiles for Pr = 0.7
(0 6 y 6 h/2).
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Fig. 3. Non-dimensionalized measured temperature profiles for Pr = 5.4.

Fig. 4. Least square fit of D over 1/Ra0.25 for all data from Figs. 2 and 3.
This Rayleigh number dependence obviously is an effect
of finite Rayleigh numbers, that are not yet large enough
for the asymptotic representation (Ra ! 1).

In order to extrapolate D for Ra ! 1 from finite Ray-
leigh number data we correlate them by

D ¼ � 14:94

Ra0:25
þ 3:43 ð15Þ

and thus get D1 = 3.43 for Ra ! 1, see Fig. 4.
For high Rayleigh numbers (Ra ! 1) the temperature

profile according to our asymptotic approach therefore is

H� ¼ 0:1 � lnðy�Þ þ 3:43. ð16Þ
If any, there is no strong Prandtl number influence on the
data shown by Fig. 4 which covers flows with 0.71 6

Pr 6 5.4.

3. Nusselt–Rayleigh correlation

In the previous section the asymptotic form of the tem-
perature profile was derived. Assuming the logarithmic
profile to be approximately valid up to y = h/2 (cf. the
DNS data in Fig. 2) our temperature profile can be trans-
formed into a Nusselt–Rayleigh correlation, using T(0) �
T(h/2) = DT/2 in Eq. (12), i.e.

DT=2
T c

¼ C � ln oT
oy

����
����
w

� h=2
T c

� �
þ D. ð17Þ

This can be rewritten as

Nu ¼ Ra1=3

C
2
ln 1

16
� Ra � Nu

� �
þ 2 � D

� 	4=3 ð18Þ

with C = 0.1 and D = �14.94 Æ Ra�0.25 + 3.43, according
to Eq. (15), or D1 = 3.43 as the asymptotic correlation
for Ra ! 1.

This Nusselt correlation is an implicit function and can-
not be calculated directly. Table 3 in the Appendix shows
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calculated values of the Nusselt number for different Ray-
leigh numbers as well as values from an approximation
(22), see the Appendix, to this Nusselt correlation.

Correlation (18) can be used for Pr J 0.5 since then the
influence of the Prandtl number is negligible or at least
within the measurement uncertainties, see for example
Roche et al. [16] and Ahlers and Xu [24]. Verzicco and
Camussi [25] in a numerical study showed that even for
Pr J 0.35 the Prandtl number influence can be neglected.

3.1. Comparison with experimental and numerical data

As mentioned in Section 1 already we only refer to
experimental data that correctly take into account the con-
jugate heat transfer effects at the side walls. They are listed
in Table 2 together with numerical data for which side wall
conduction does not exist due to the imposed periodic
boundary conditions.

In Fig. 5 Nu(Ra) from measurements by Niemela and
Sreenivasan [15] and DNS calculations by Kerr [5] are
compared to Eq. (18) with D according to Eq. (15). Though
Ra varies by ten orders of magnitude (105–1015) the agree-
ment is good.

In Fig. 6(a) and (b), all data of Table 2 are plotted as
Nu Æ Ra�2/7 vs. Ra leading to a high resolution plot where
deviations become more obvious. The exponent of �2/7
was chosen for ‘‘historical’’ reasons. Additionally, we show
the correlations of Wu and Libchaber [4] in accordance
with the 2/7th power law of Castaing et al. [2] and the 1/
3rd power law of Goldstein and Tokuda [27] in accordance
with Priestley [1]. To avoid confusion by too many data
those for Pr = 0.7 are shown in Fig. 6(a) and those for
Pr > 0.7 in Fig. 6(b).

In this high resolution plots it can be seen that the differ-
ent data sets have no uniform behaviour, but show a mod-
erate scatter. Nevertheless, the proposed Nusselt
correlation (18) lies very well within the Nusselt data obvi-
ously closer to the data than the 1/3rd and 2/7th power
laws according to [4] and [27], respectively.

It should be kept in mind, however, that our analysis
was based on the assumption of plates of infinite extent
(C = 1; like in the DNS calculations) resulting in a heat
Table 2
Data used in this study for comparison with the Nusselt–Rayleigh correlation

Authors Ra-range Pr

Niemela [9] 106 < Ra < 1017 Pr

Ashkenazi [12] 109 < Ra < 5 · 1015 1
Chavanne [13] 105 < Ra < 2 · 1014 0.
Nikolaenko [14] 3 · 109 < Ra < 6 · 1010 Pr

Niemela [15] 6 · 106 < Ra < 2 · 1015 Pr

Roche [16] 3 · 108 < Ra < 1011 0.
Ahlers [24] 3 · 107 < Ra < 1011 4
Kerr [5]DNS 5 · 104 < Ra < 2 · 107 Pr

Hartlep [21]DNS 2 · 103 < Ra < 107 Pr

Verzicco [26]DNS 2 · 106 < Ra < 2 · 1011 Pr

[. . .]DNS: numerical studies (DNS); ‘‘
p
’’ in the last column: Nu(Ra) is given

graphical form or as a power law.
transfer problem with no (time-averaged local) mean flow.
However, since there are no experimental data with high
aspect ratios (C ! 1, i.e. with no mean flow) at high Ray-
leigh numbers we only can compare our Eq. (18) to data
obtained in cells with 1/2 6 C 6 1 where a mean flow
exists. According to Ahlers and Xu [24] the influence of
the aspect ratio is negligible for 1/2 6 C 6 1. For C = 1,
however, deviations might occur that cannot be estimated
properly. For example, Roche et al. [16] with C = 1/2
observed a bimodality for the Nusselt correlation (two dif-
ferent factors in front of the Rayleigh number in their
power law) and explained it with two different flow situa-
tions that might develop in their cell. Small aspect ratios
might be one reason for the inconsistency found in recent
data sets and also might result in deviations between our
Theory (18) and the data from Table 2.

3.2. Theory of Grossmann and Lohse

Along with the Theories of Priestley [1] and Castaing
et al. [2] a third theory was established by Grossmann
(18)

-range C Data

� 1 1/2 –
6 Pr 6 93 1 –
66 < Pr < 37 1/2

p

= 4.4 1 –
� 1 1

p

7 < Pr < 21 1/2
p

< Pr < 34.1 1/2 and 1 –
= 0.7 1 p

= 0.7 1 p

= 0.7 1/2
p

explicitly in tabulated form; ‘‘–’’ in the last column: Nu(Ra) is given in
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and Lohse [6] which became widely accepted in the last few
years. Their derivation of the Nusselt correlation is based
on kinematic and thermal dissipation, that can be domi-
nant either in the boundary layers or in the core region.
To account for different cases, they introduced a Rayleigh
Prandtl phase diagram and defined eight different regions
with their own scalings. To obtain a Nusselt number corre-
lation for a certain case, the Prandtl number and the range
of Rayleigh numbers must be known in order to identify
the appropriate regions in the phase diagram. The Nusselt
number then is calculated as the superposition of two
neighbouring regions. For more details how to use the The-
ory of Grossmann and Lohse [6] see also Xu et al. [7], who
performed experiments with acetone (Pr = 4.0) and found
good agreement with the Theory in [6].

In order to compare our Theory (18) and that of Gross-
mann and Lohse [6] to experimental data, we choose two
different Prandtl numbers, Pr � 0.7 and Pr � 3. For
Pr � 0.7, with the notation of the work of Grossmann
and Lohse [6], the heat transfer is dominated by regime Il
and IVu, leading to

Nu ¼ 0:27 � Ra1=4 � Pr�1=8|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Il

þ 0:038 � Ra1=3|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
IVu

ð19Þ

This correlation is plotted in Fig. 7(a) together with Eq.
(18) against the data of Niemela and Sreenivasan [15]
and Niemela et al. [9].

For Pr � 0.7 our Theory, Eq. (18), is in closer agreement
to the experimental data than Eq. (19) according to the
Theory by Grossmann and Lohse [6].

For Pr � 3, the regimes Iu and IIIu in [6] are dominant,
so that

Nu ¼ 0:33 � Ra1=4 � Pr�1=12|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Iu

þ 0:00343 � Ra3=7 � Pr�1=7|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IIIu

. ð20Þ

This equation is shown in Fig. 7(b) together with our Eq.
(18) and the data of Roche et al. [16] for Pr = 2.6 and
Chavanne et al. [13] for Pr � 3.
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surface roughness. If the value of the non-dimensionlized roughness ks/h is
below the graph the roughness lies within the viscous sublayer and it can
be neglected. For all Rayleigh numbers above the intersection, the Nusselt
data should show a change in its behaviour. The inserted box shows the
Rayleigh numbers for which we estimated deviations.
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The data of Roche et al. [16] are badly represented by
both theories, whereas Eq. (20) matches the data of Chav-
anne et al. [13] fairly well at high Rayleigh numbers.

At least for those (typical) cases shown here both theo-
ries perform equally well (or bad), though our Nusselt
number correlation is much easier to handle.

3.3. Influence of surface roughness

In Fig. 6(a) and (b) a closer inspection reveals that the
Nusselt number curves of Niemela and Sreenivasan [15]
and Chavanne et al. [13] change their slope at very high
Rayleigh numbers. Sometimes, this behaviour is believed
to be connected to the ultimate regime proposed by Kraich-
nan [28]. An alternative explanation, however, would be
the influence of the surface roughness, that will be esti-
mated next.

The viscous sublayer expands from the wall up to
y· � 1.5 since in this region the temperature profile is
purely linear, see Figs. 2 and 3. If the surface roughness,
ks, lies within the viscous sublayer the surface is hydrauli-
cally smooth. If roughness elements stick out of the viscous
sublayer, the temperature profile and therefore also the
Nusselt number is effected by these elements.

Thus, the surface roughness is assumed to be of impor-
tance if

k�s � ks
T c

� oT
oy

����
����
w

> 1:5 i.e.
ks
h
> 1:5 � ðRa � NuÞ�1=4. ð21Þ

The experiments of Niemela and Sreenivasan [15] and
Chavanne et al. [13] both used copper top and bottom
plates for which ks = 20 lm can be assumed as a typical
roughness height.3 The cell heights were h = 0.5 m and
h = 0.2 m, respectively. Now it can be estimated for which
Rayleigh numbers roughness effects gain importance, i.e.
for which Rayleigh numbers ks/h is greater than
1.5 Æ (Ra Æ Nu)�1/4.

Fig. 8 shows a plot of 1.5 Æ (Ra Æ Nu)�1/4 vs. Ra with Eq.
(18) for Nu together with the two roughness values. In [15]
the non-dimensional roughness is ks/h = 4 · 10�5, resulting
in a Rayleigh number Ra = 4.6 · 1014 for which roughness
effects should gain influence. The roughness in [13] is
ks/h = 1.0 · 10�4, leading to Ra = 3 · 1013. The inserted
box in Fig. 8 shows the Nusselt data of Niemela and Sreen-
ivasan [15] and Chavanne et al. [13]. In both cases, the
slope of the Nusselt number changes for Rayleigh numbers
just beyond the estimated values as indicated by the arrows
in the inserted box. Given the uncertainties of ks and of the
width of the molecular sublayer (y· � 1.5), surface rough-
ness effects might be a reasonable explanation, i.e. the
change in the slope of the Nusselt number might not just
be a Rayleigh number effect, as proposed by Kraichnan
[28], but can also be explained by the disturbance of the
3 Schlichting and Gersten [29] give a equivalent sand roughness
ks eq < 30 lm for copper. To stay in this range we chose ks = ks eq = 20 lm.
molecular sublayer and is therefore a function of the Ray-
leigh number and height h of the cell.

4. Conclusions

The structure of the temperature profile was analysed
asymptotically and a logarithmic profile in the overlap layer
was found. According to available temperature data for
large but finite Rayleigh numbers, the logarithmic profiles
depend on the Rayleigh number. After an extrapolation
for Ra ! 1, however, the asymptotic profile emerges.
Nevertheless, it would be highly desirable to have measured
or simulated temperature profiles for Ra > 1010 with special
attention paid to the temperature wall gradient, since this is
the crucial parameter for the present analysis.

From the temperature profile a Nusselt number correla-
tion can be deduced and compared to experimental and
numerical data. This correlation covers existing data for
105 6 Ra 6 1015 better than the 1/3- and 2/7-power laws
(see Priestley [1] and Castaing et al. [2]). Also, for Pr >
0.5, it is an alternative to the Theory of Grossmann and
Lohse [6].

Additionally, we analysed surface roughness effects
showing that once the roughness elements exceed the vis-
cous sublayer deviations in the Nusselt number data occur
in certain published experiments.

Appendix A

The Nusselt number correlation (18) is an implicit func-
tion and therefore Nu cannot be calculated directly.
Though the correlation is easy to solve by iterations an
approximation might be convenient.



Table 3
Comparison of Nusselt numbers calculated with Eq. (18) and with the
explicit approximation (22)

Ra Nu, Eq. (18) Nuappr, Eq. (22) r in %

105 4.566 4.569 0.07
106 8.123 8.116 �0.09
107 15.689 15.668 �0.13
108 31.526 31.483 �0.14
109 64.668 64.587 �0.13
1010 134.135 133.992 �0.11
1011 279.957 279.721 �0.08
1012 586.404 586.048 �0.06
1013 1230.938 1230.493 �0.04
1014 2587.421 2587.122 �0.01
1015 5443.761 5444.465 0.01

Here, r is the relative error in %, i.e. (Nuappr � Nu)/Nu.
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For that purpose we replace Nu in the logarithmic term
of Eq. (18) by the approximation Nu = 0.078 Æ Ra0.323

which holds for Ra ! 1, and thus get

Nu ¼ Ra1=3

C
2
ln 0:078

16
� Ra1:323

� �
þ 2 � D

� 	4=3 ð22Þ

C ¼ 0:1 ð23Þ

D ¼ � 14:94

Ra0:25
þ 3:43 ð24Þ

Table 3 gives some values of the Nusselt number calculated
with the implicit Eq. (18), the explicit approximation (22)
and the relative error r in %. Since the error always is less
than ±0.2% the explicit formula is a useful approximation
that is easier to handle.
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